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Abstract
Retinal ganglion cells (RGCs) play a crucial role in the visual 
pathway. As their axons form the optic nerve, apoptosis of 
these cells causes neurodegenerative vision loss. RGC death 
could be triggered by increased intraocular pressure, ad-
vanced glycation end products, or mitochondrial dysfunc-
tion. In this review, we summarize the role of some neuro-
protective factors in RGC injury: ciliary neurotrophic factor 
(CNTF), nerve growth factor (NGF), brain-derived neuro-
trophic factor, vascular endothelial growth factor, pigment 
epithelium-derived factor, glial cell line-derived neurotroph-
ic factor, and Norrin. Each, in their own unique way, prevents 
RGC damage caused by glaucoma, ocular hypertension, 
ischemic neuropathy, and even oxygen-induced retinopa-
thy. These factors are produced mainly by neurons, leuko-
cytes, glial cells, and epithelial cells. Neuroprotective factors 
act via various signaling pathways, including JAK/STAT, 
MAPK, TrkA, and TrkB, which promotes RGC survival. Many 
attempts have been made to develop therapeutic strategies 

using these factors. There are ongoing clinical trials with 
CNTF and NGF, but they have not yet been accepted for clin-
ical use. © 2021 S. Karger AG, Basel

Introduction

The Anatomy of the Retina
The retina is a complex structure that receives visual 

information. It consists of 10 layers, 9 inner layers are 
neural, and the outermost layer is the retinal pigment ep-
ithelium (RPE) [1]. In addition to light absorption, the 
RPE plays a role in nourishing the neuroretina, maintain-
ing ionic equilibrium, and retinaldehyde metabolism [2]. 
The retina’s neural part is composed of 5 major neuron 
types: bipolar cells, ganglion cells, horizontal cells, ama-
crine cells, and photoreceptors, which form a highly or-
dered 9-layer structure [1, 3]. Recently, novel approaches 
to the structural organization of the neuroretina of the 
neuroretina have been described. A simplified division 
distinguishes 3 layers of neuron bodies containing nuclei 
and 2 layers of synaptic connections between them, mak-
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ing 5 layers in total [4]. Each type of retinal cell compris-
es a mosaic-like structure that provides a regular distribu-
tion throughout the retina [5]. Signal transduction in the 
retina begins with the isomerization of 11-cis retinal 
bounded to one of the visual pigments – rhodopsin for 
rods and cone opsin for cones. Next, the signal from the 
photoreceptors reaches the bipolar cells through gluta-
mate-mediated synapses. This process is controlled by 
the horizontal cells. Bipolar cells convey the signal to the 
retinal ganglion cells (RGCs) [6–8]. The anatomy of the 
neural retina and receptors of the RGCs is shown in Fig-
ure 1.

Retinal Ganglion Cells
RGCs form the innermost layer of the neural retina 

and are the last cells of the neural net to receive visual 
stimulus within the eye. Their axons form the optic nerve, 
which conducts the visual information as impulses to the 
brain [6]. The electrical stimulus passed by the RGCs to 
the visual cortex consolidates the modifications made by 
previous neurons of the retina [9]. Therefore, RGCs play 
a vital and indispensable role in the process of vision and 
their injury can lead to irreversible blindness, as seen in 
advanced glaucoma [10]. Neuroprotection of these cells 
is a broadly studied therapy option that could eventually 
stop the development of disease [11].

Mechanisms Involved in Retinal Ganglion Cell 
Damage
As described above, the retina is a structure composed 

of neuronal cells which are prone to degeneration due to 
injury, aging, diabetes, and ocular hypertension [12, 13]. 
The mechanisms involved in RGC protection are de-
scribed in Figure 1. Neurotrophic factors contribute to 
the survival of RGCs in case of damage due to their anti-
apoptotic activity. Neurons that do not receive adequate 
signals undergo apoptosis [14]. It has been shown that 
advanced glycation end products, which are associated 
with aging and diabetes, induce activation of caspase 3, 
one of the executioner caspases actives in apoptosis, in the 
retinal explant cells [15, 16]. However, the presence of the 
active forms of caspases 3 and 9 in retinal cells exposed to 
high glucose levels incubated with neurotrophic factors 
(e.g., brain-derived neurotrophic factor [BDNF]) was sig-
nificantly lower than in the control group [17]. Elevated 
intraocular pressure (IOP), which is a relevant risk factor 
in glaucoma pathogenesis, leads to the expression of 
high-mobility group box 1 (HMGB1) protein and then 
leads to inflammasome activation which triggers further 
inflammation [18]. Increased IOP also induces phos-

phorylation of antiapoptotic cytoplasmic protein 14-3-3. 
Phosphorylation of 14-3-3 enables the dephosphoryla-
tion and consequently the activation of the proapoptotic 
protein Bcl-2 associated agonist of cell death (BAD) [19]. 
Another study showed that elevated IOP enhances Bax 
expression, which is also a proapoptotic factor [20]. 
Apoptosis in glaucoma and diabetic retinopathy can be 
induced directly by inflammatory cytokines such as tu-
mor necrosis factor-alpha (TNFα), as well as membrane-
bound Fas-ligand (FasL) [21–23]. Interestingly, soluble 
FasL appears to have a neuroprotective activity [22]. It is 
worth noting that expression of FasL and other proapop-
totic factors such as active caspases 3 and 8 was upregu-
lated in the retina of diabetic patients compared with 
healthy individuals and no difference was observed in the 
expression of antiapoptotic markers: B-cell lymphoma-
extra large (Bcl-xL), FLICE-like inhibitory protein (FLIP), 
and cyclooxygenase-2 (COX2) [24]. Also, mitochondrial 
dysfunction might play a role in RGC death [25]. Muta-
tions in mitochondrial DNA (mtDNA) caused by in-
creased IOP lead to the progressive loss of RGCs. This 
damage includes flaws in the electron transport chain and 
consequently alteration in the reactive oxygen species 
(ROS) levels, leading to further mtDNA damage. Mutant 
mitochondria also do not provide enough adenosine tri-
phosphate production. Ultimately, even when the IOP 
lowers, mitochondrial derangement leads to the apopto-
sis of RGCs [26, 27]. Aging also leads to elevated levels of 
ROS, which is one of the major correlations of gradual 
vision impairment in the elderly [28]. Eventually, RGCs 
are lost physiologically with increasing age [29].

Aim of the Review
A few proteins have been shown to demonstrate neu-

roprotective properties in response to retina damage. 
This review summarizes the up-to-date knowledge about 
their function in protecting RGCs from degeneration. 
Also, we have outlined the recent experimental and clini-
cal trials which explore the therapeutic possibilities of 
neuroprotective factors in acute neuropathies such as op-
tic nerve crush and in chronic neuropathies such as glau-
coma.

Proteins with Neuroprotective Properties

Ciliary Neurotrophic Factor
Ciliary neurotrophic factor (CNTF) is a neuropoietic 

cytokine that belongs to the IL-6 family. It binds to a 
gp130 receptor to activate the JAK/STAT and MAPK 
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Fig. 1. The anatomy of the neural retina and receptors of the RGCs. The pathways are activated by neuroprotec-
tive factors.
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pathways [30]. These signaling pathways regulate gene 
expression to stimulate neuron regeneration in mice and 
zebra fish [31, 32]. In the eye, CNTF exerts a neuroprotec-
tive effect on photoreceptors and the RGCs by stimulat-
ing regeneration [33]. It was also shown that CNTF de-
privation does not cause neurodegeneration in the retina 
[34]. However, CNTF administration can significantly 
increase the survival of retinal cells [35]. Many studies 
have been conducted to define the best way of CNTF de-
livery to the retina.

Intravitreal injection of CNTF in a murine model of 
nonarteritic anterior ischemic optic neuropathy revealed 
a significant increase in the survival rate of RGCs com-
pared with the control group [36]. An increase in the sur-
vival of RGCs was also noted when intravitreal injection 
of CNTF was combined with cyclic adenosine mono-
phosphate analog [37]. Two administration routes were 
compared in an in vitro study of RGCs with H2O2-in-
duced injury: (i) using lentiviral vectors carrying the 
CNTF gene and (ii) adding the protein to the culture me-
dium. Although a neuroprotective effect was observed in 
both groups, there was no significant difference in the 
survival of RGCs between the 2 methods [35].

Adeno-associated viral vector (AAV)-mediated CNTF 
gene transfer has been proven to support axon regenera-
tion of RGCs after optic nerve crush [38, 39]. However, 
Hellström et al. [40] pointed out that the effect of CNTF 
administration via adeno-associated viral vector is de-
layed because of the time needed to start gene expression. 
To maintain the therapeutic effect during the delay, a 
combined genetic and pharmacological treatment (the 
administration of recombinant CNTF with cyclic ade-
nosine monophosphate analog) was proposed which 
turned out to be very effective in protecting the RGCs af-
ter nervous tissue trauma in rats [40].

Neural stem cells can be genetically modified to pro-
duce more CNTF and can then be grafted into the vitre-
ous body to exert a neuroprotective effect as shown in a 
mouse model after optic nerve crush [41]. When neural 
stem cells that produce glial cell line-derived neurotroph-
ic factor (GDNF) were added to the CNTF therapy, the 
proteins had a synergic effect in the protection of RGCs 
[42].

Another method of modulating CNTF expression is 
through the inhibition of the purinergic receptor P2X7 
(P2X7R) [43]. The P2X7R is an ionotropic receptor acti-
vated by extracellular adenosine triphosphate, which pro-
motes the synthesis of various pro-inflammatory media-
tors that support neuroinflammation which later leads to 
neurodegeneration. The P2X7R can be found on microg-

lial cells, astrocytes, and neurons throughout the central 
nervous system including the retina, and also in other 
structures of the globe such as the cornea, lens cells, etc. 
[43, 44]. Antagonizing P2X7R weakens the inflammatory 
response and leads to neuroprotection [43, 45–47]. Re-
cently, it was shown that chronic application of eye drops 
containing P2XR7 antagonist in mice with glaucoma de-
creased the number of activated microglia and prevented 
the loss of RGCs [46]. Inhibiting P2X7R has been shown 
to increase the levels of CNTF in neurons. However, de-
livering to mice Brilliant Blue G, the well-known P2X7R 
antagonists, exerts no neurogenic effect, despite increas-
ing pro-neurogenic CNTF due to the simultaneous in-
ducement of counteracting growth factors [48].

Nerve Growth Factor
Nerve growth factor (NGF) is a neurotrophic factor 

secreted by multiple cells: neurons, Schwann cells, and 
oligodendrocytes of the nervous tissue; mast cells, T cells, 
and macrophages of the immune system; keratinocytes, 
melanocytes, and fibroblasts of the skin; and even by 
smooth muscle cells. Its functions include regulating neu-
rogenesis and apoptosis, promoting neuron plasticity, 
modulating a neuron’s response to heat and pain, and 
participating in the process of neuroinflammation with 
nociceptor activation [49]. There are 2 NGF receptors in 
the retina: the RGCs express the transmembrane tyrosine 
receptor kinase A (TrkA), while glial cells express the p75 
neurotrophin receptor (p75NTR). NGF, like BDNF, is pro-
duced not only in the retina but also in the brain, from 
where it is transported via the neurons of the optic disc. 
Disturbance in this pathway leads to altered NGF levels 
in the retina [50]. NGF can be blocked by α2-
Macroglobulin, which precludes NGF interaction with its 
receptor. A lack of NGF trophic function leads to a de-
crease in the survival rate of retinal cells [51].

Attempts to prevent RGC death in glaucoma by NGF 
administration did not meet expected outcomes, proba-
bly due to NGF activating the receptors of the opposite 
action – TrkA and p75NTR [52]. Mesentier-Louro et al. 
[53] studied the effect of optic nerve crush on the upregu-
lation of NGF, proNGF, and p75NTR. It was proposed that 
while NGF exerts a neuroprotective action by activating 
TrkA, proNGF activates p75NTR to promote apoptosis, 
with the overall result being RGC degeneration [53]. 
Therefore, effective treatment should include a drug that 
selectively activates the neuroprotective TrkA or inhibits 
the proapoptotic p75NTR [52, 54]. On the other hand, Guo 
et al. [55] showed that topical administration of recombi-
nant human NGF (rh-NGF) does exert significant neuro-
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protection in animal optic neuropathy models. The de-
scribed mechanism involves inhibition of the secondary 
neurodegenerative processes [55].

Brain-Derived Neurotrophic Factor
BDNF is a neurotrophin produced by neurons in the 

retina, such as RGCs, amacrine cells, astrocytes, retinal 
glial cells (Müller cells), and photoreceptors [56, 57]. 
BDNF can also be transported between the brain and the 
retina via the optic nerve [58, 59]. Its primary functions 
in the nervous system include controlling neural develop-
ment, modulating synaptogenesis, and neuroprotection 
[60]. In the retina, BDNF plays a vital role in vision sig-
naling development by regulating laminar refinement in 
the dendrites of RGCs, which leads to the proper forma-
tion of the retinal structure [61]. In mature individuals, 
endogenous BDNF exerts neuroprotective effects on 
RGCs by protecting dendritic fields and reducing vision 
loss after ocular hypertension-induced injury, which was 
observed in animal models of ocular hypertension and 
glaucoma [58, 62]. Another function of BDNF is protec-
tion of the retina cells from injuries caused by hypoxia 
and glucose deprivation [63].

Tropomyosin receptor kinase B (TrkB), the BDNF re-
ceptor [64], may also be activated by specific immuno-
globulins. Administration of mouse monoclonal anti-
bodies, which act as TrkB exogenous selective agonists, 
promotes antiapoptotic activity [65]. The Src homology 
region 2-containing protein tyrosine phosphatase 2 
(Shp2) has been identified as playing a role in BDNF-
TrkB signaling. Shp2-mediated TrkB dephosphorylation 
inhibits the signaling pathway and thus leads to decreased 
survival of the RGCs. Modulating Shp2 activity appears 
to be a new target in experimental glaucoma therapy [66].

Similar to CNTF, BDNF expression may also be influ-
enced by purinergic receptor signaling. P2X7R, men-
tioned above, has been shown to influence BDNF action: 
antagonizing P2X7R leads to TrkB activation [67]. BDNF 
expression can also be modulated by purinergic receptors 
that belong to the P1 family of metabotropic receptors 
activated by extracellular adenosine. There is a complex 
crosstalk between the P1A1 receptors, the P1A2A recep-
tors, interleukin-6 expression, and BDNF expression, 
which is not fully understood [68]. Nevertheless, antago-
nism of the P1A1 and P1A2A receptors is considered to 
be a potential future therapeutic option for neurodegen-
erative diseases of the central nervous system [44, 69].

BDNF has been used therapeutically in animal models 
of glaucoma. However, intravitreal administration of a 
recombinant protein has a time-limited effect due to the 

downregulation of TrkB that follows [70–72]. To coun-
teract this effect, a novel gene therapy transferring both 
the BDNF and the TrkB gene has been proposed and was 
proven to promote long-term survival of the RGCs in a 
rodent model of optic nerve injury [73].

Vascular Endothelial Growth Factor
Vascular endothelial growth factor (VEGF) is a family 

of proangiogenic factors that includes 7 proteins: VEGF 
A, B, C, D, E, F, and placental growth factor. The most 
widely distributed in human tissue is VEGF A, which is 
commonly referred to simply as “VEGF” [74]. In the eye, 
it is secreted by multiple cells, such as cells of the vascular 
and RPE, Müller cells, astrocytes, and RGCs. VEGF binds 
to VEGF receptors 1 (VEGFR-1) and 2 (VEGFR-2) [75]. 
The primary VEGF functions include promotion of an-
giogenesis, vasodilation, and increasing vascular perme-
ability [76]. It also plays a role in the pathomechanism of 
ocular retinopathies, e.g., exudative age-related macular 
degeneration and diabetic macular edema [75]. However, 
VEGF exhibits neuroprotective properties. It was shown 
that VEGF-A binding to VEGFR-2 and activation of the 
PI3-K/ACT pathway was necessary to promote the sur-
vival of the RGCs. This action was not only neuroprotec-
tive but also sufficient for glaucoma prevention [77]. 
There are 2 isoforms of VEGF-A (VEGF-A165a and 
VEGF-A165b). VEGF-A165b is of greater importance in 
neuroprotection and may be useful in treating neuropa-
thies, but it also exhibits angiogenic activity [78]. There-
fore, the administration of VEGF in ocular disorders for 
its neuroprotective effect is disputable due to the high 
chance of vascular adverse effects. In vitro studies showed 
that non-inflammatory VEGF121 modified to be bound 
to a cell membrane, thus exerting an autocrine effect only, 
was beneficial for the survival of RGCs and also lacked the 
ability to bind to other cells [79]. Surprisingly, the admin-
istration of ranibizumab, a humanized antibody that 
binds VEGF-A after optic nerve injury, attenuates the loss 
of RGCs. A negative correlation was shown between 
VEGF concentration in the aqueous humor, peripheral 
blood, and the number of surviving cells [80].

Pigment Epithelium-Derived Factor
Pigment epithelium-derived factor (PEDF) in the ret-

ina is secreted by the Müller cells and exhibits antiangio-
genic and neuroprotective activity. It can prevent damage 
to RGCs and stimulate axogenesis [81–83]. PEDF inhibi-
tion has been shown to decrease the survival of RGCs in 
vitro [84, 85]. Several mechanisms of action have been 
proposed: caspase 2 suppression, upregulation of the un-
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coupling of protein 2, prevention of mitochondrial dys-
function, and activation of the STAT3 pathway [86–89]. 
It was shown that increased (IOP) leads to the upregula-
tion of PEDF and its receptor – PEDF-R, thus inhibiting 
apoptosis of RGCs [90]. Also, the method of administra-
tion may have an impact on effectiveness. Vigneswara et 
al. [91] investigated the difference between daily eye drop 
delivery and weekly intravitreal injections in rats after op-
tic nerve crush and showed the greater effectiveness of 
daily eye drop delivery for the survival of RGCs. Gene 
therapy through lentiviral vectors has also been proven to 
attenuate the apoptosis of RGCs in ocular hypertension 
models [92].

Glial Cell Line-Derived Neurotrophic Factor
Four proteins belonging to the glial cell line-derived 

neurotrophic factor (GDNF) family of ligands have been 
described: GDNF, artemin, neurturin, and persephin. 
They play a vital role in the development and function of 
the nervous system, in spermatogenesis, and in renal 
growth [93, 94]. Many studies focused on the role of 
GDNF family of ligands in the retina, proving their neu-
roprotective effect on photoreceptors and RGCs [95, 96]. 
Post-injury apoptosis of RGCs may be promoted by ex-
tracellular glutamate, whereas GDNF and neurturin pre-
vent the proapoptotic cascade by upregulating the gluta-
mate transporter levels which leads to the uptake of the 
glutamate by retinal cells [97]. In the rodent models of 
glaucoma, administration of GDNF-loaded microspheres 
by intravitreal injections resulted in increased density of 
the RGCs [98], increased axon survival, and lowered pro-
inflammatory glial cell activation [99]. After adding vita-
min E to the microsphere structure, an additive effect can 
be observed due to the vitamin’s antioxidant and anti
proliferative properties [100].

Norrin
Norrin is a protein constitutively expressed by the 

Müller cells in the retina. It has functional similarity to 
growth factors, and its reported functions include angio-
genesis stimulation and neuroprotection [101]. Norrin 
binds to the Frizzled-4 (FZD4) receptors to activate the 
Wnt/β-catenin signaling pathway, which promotes cell 
survival. It has been proven that inhibiting this signaling 
pathway (through dickkopf-1, a Wnt/β-catenin inhibi-
tor) suppresses the action of Norrin [102, 103]. Another 
proposed mechanism of neuroprotection involves the 
leukemia inhibitory factor (LIF), which is necessary for 
the gliosis of Müller cells – a reaction of neural cells that 
contributes to the maintenance of retinal homeostasis in 

physiological and pathological states [104]. After excito-
toxic damage, Norrin induces LIF expression in retinal 
neurons, which in turn stimulates Müller cells to secrete 
protective factors – endothelin 2 (ET-2) and fibroblast 
growth factor 2 (FGF2) [105].

The neuroprotective effects of Norrin were shown in 
both acute and chronic neuropathies. After protease-me-
diated injury of RGCs, the protein acts via the Wnt/β-
catenin signaling pathway to increase the survival of 
RGCs [106]. In a mouse model of glaucoma, genetically 
modified individuals with overexpression of the Norrin 
gene showed greater survival of RGCs [107].

Norrin has also been studied in a rodent model of ox-
ygen-induced retinopathy. It was shown that intravitreal 
injections of Norrin correlated with a higher density of 
RGCs and a thicker nerve fiber layer [108].

Eye Disease Therapies Based on Neuroprotective 
Factors in Clinical Trials

As of today, little is known about the translation of 
neuroprotective factor therapies into clinical use. New 
treatment strategies are researched for diseases primarily 
caused by the degeneration of RGCs such as glaucoma, 
and other ophthalmic diseases such as macular degenera-
tion, retinitis pigmentosa, ischemic optic neuropathy, 
macular telangiectasia, and cystoid macular edema (Ta-
ble 1). The only tested CNTF-based therapy for the above-
mentioned diseases, with the exception of cystoid macu-
lar edema, is the NT-501 encapsulated cell implant-based 
therapy. NT-501 is an implant containing immortal cells, 
genetically modified to express CNTF, embedded on a 
polymer scaffold. It is inserted into the eye globe through 
the inferotemporal quadrant of the sclera and affixed with 
a single suture during a 15-min procedure. Although 
many studies on phase 2 were conducted on this implant, 
no further phase 3 trials have been registered at https://
clinicaltrials.gov/ [109–113]. Currently, an extension 
study is conducted among patients with Macular Telan-
giectasia Type 2, an idiopathic disease considered as pri-
marily neurodegenerative [114]. This extension study 
was justified by the positive outcome of previous investi-
gations (NCT03071965) [113]. Another therapy, with 
topical administration of human recombinant NGF (rh-
NGF), appears to be in the early stage of introduction to 
clinical use [115]. Patients receive eye drops which pen-
etrate the conjunctival sac to reach the inner part of the 
globe. This approach was proven as safe and then tested 
on neurotrophic keratitis, which is not associated with 
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damage to RGCs but with impairment of the ophthalmic 
branch of the trigeminal nerve innervating the cornea 
[115, 116]. The phase 2 study suggested that rh-NGF 
could be effective in neurotrophic keratitis treatment 
[117]. Drugs acting as a decoy to VEGF are currently test-
ed as an intravitreal therapy mainly for macular degen-
eration patients [118, 119]. The collective inhibitor of 
VEGF and PDGF administered intravitreally was also 
tested, and results revealed that the combination of both 
leads to relatively higher visual activity compared with 
monotherapy [120]. In some studies, ranibizumab, a 
VEGF-A antibody, was combined with novel drugs such 
as pazopanib eye drops (a VEGFR tyrosine kinase inhibi-
tor), but no significant improvement was observed com-
pared to ranibizumab only [121]. Altogether, a significant 
number of studies are investigating VEGF-related agents, 
based on the number of searches at https://clinicaltrials.
gov/; however, all of them focus on inhibiting neovascu-

larization. No studies on neuroprotective therapy based 
on VEGF were found. As for P2X7R, even though pre-
clinical data shows promise, no clinical trials targeting 
this receptor in therapy of ophthalmic diseases have been 
registered.

However, neurotrophic factors are not the only agents 
presenting neuroprotective properties. Citicoline (cyti-
dine 5′-diphosphocholine) is currently used as a dietary 
supplement as it has been proven to mitigate symptoms 
of neurological diseases such as Alzheimer’s disease. Ex-
perimental data show that citicoline exhibits neuropro-
tective, neurorestorative, and regenerative activity in ret-
inal cells in vitro and in animal models. Also, clinical tri-
als have confirmed positive outcomes from the use of 
citicoline in patients with glaucoma [122]. Some reports 
indicate that simvastatin exhibits neuroprotective prop-
erties by inhibiting stress-related intracellular pathways 
in microglia and astrocytes in animal models. This action 

Table 1. Clinical trials using neuroprotective factor-based therapies registered at clinicaltrials.gov (up to June 2020)

Factor Group of patients Clinicaltrials.Gov 
identifier

Intervention Phase of clinical 
trial

Year of 
study start

Results

CNTF Glaucoma NCT01408472 NT-501
Encapsulated cell 
therapy

1 2011 Not published

NCT02862938 2 2016

Retinitis pigmentosa NCT00063765 1 2003 Positive safety profile [100]

Retinitis pigmentosa (early 
stage)

NCT00447980 2 2007 Not significant changes in visual field and 
visual acuity [100, 102]

Retinitis pigmentosa (late 
stage)

NCT00447993 2 2007 Not significant changes in visual field and 
visual acuity except decrease in vision 
sensivity in high-dose treated patients 
[102]

Macular degeneration and 
geographic atrophy

NCT00447954 2 2007 Structural and functional improvements 
in retina [99, 100]

Ischemic optic neuropathy NCT01411657 1 2011 Not published

Macular telangiectasia type 
2

NCT01327911 1 2011 Positive safety profile [101]

NCT01949324 2 2003 Slower progression of retinal degradation 
[103]

NCT03071965 2 (extension study) 2017 Not published

NGF Glaucoma NCT02855450 Topical 
administration of 
rhNGF drops

1 2016 Not published

Retinitis pigmentosa NCT02110225 2 2014 Results published on https://clinicaltrials.
gov/without analysis

Retinitis pigmentosa and 
cystoid macular edema

NCT02609165 2 2015 Not published

Healthy volunteers NCT01744704 1 2012 Positive safety profile [105]

CNTF, ciliary neurotrophic factor; NGF, nerve growth factor; rhNGF, recombinant human nerve growth factor.
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results in attenuated inflammation in the retina, which 
may protect RGCs from death [123, 124]. The coenzyme 
Q appears to have neuroprotective properties presumably 
by acting as a ROS scavenger [125, 126]. Overall, this brief 
overview of a few examples suggests that well-known sub-
stances might be useful in the treatment of damage to 
RGCs and this area needs further study.

Conclusion

Neurodegeneration is a pathomechanism that under-
lies many ophthalmic diseases, such as glaucoma, diabet-
ic retinopathy, age-related macular degeneration, and 
retinal ischemia-reperfusion injury. As of today, modu-
lating the expression of neuroprotective factors is not the 
treatment option for ophthalmology patients. However, 
with many promising results from preclinical studies, it 
may become a therapy option for some diseases in the fu-
ture. It is worth remembering that neuroprotection can 
also be stimulated by substances other than neuroprotec-
tive factors, such as P2X7R antagonists, citicoline, statins, 
coenzyme Q, and others. However, their detailed descrip-
tion exceeds the scope of this review. Another important 
matter for researchers is to create a fully reliable model of 
injury to RGCs which will enable a better understanding 
of the efficacy of neuroprotective factors and their full 
potential. This review summarizes the most significant 
results and covers the basic foundation knowledge neces-
sary to understand the subject. It is essential for ophthal-
mology specialists to stay up to date with recent findings, 
such as the introduction of neuroprotective factors. How-
ever, this vast subject still needs further investigation 

which might provide clinicians with the information 
needed to treat patients with therapies based on neuro-
protective factors. Further studies are crucial to fully un-
derstand the impact of these proteins on RGCs.
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